Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
Добавить фильтры

Год
Годовой диапазон
1.
J Nanobiotechnology ; 20(1): 411, 2022 Sep 15.
Статья в английский | MEDLINE | ID: covidwho-2029712

Реферат

The major challenge to controlling the COVID pandemic is the rapid mutation rate of the SARS-CoV-2 virus, leading to the escape of the protection of vaccines and most of the neutralizing antibodies to date. Thus, it is essential to develop neutralizing antibodies with broad-spectrum activity targeting multiple SARS-CoV-2 variants. Here, we report a synthetic nanobody (named C5G2) obtained by phage display and subsequent antibody engineering. C5G2 has a single-digit nanomolar binding affinity to the RBD domain and inhibits its binding to ACE2 with an IC50 of 3.7 nM. Pseudovirus assays indicated that monovalent C5G2 could protect the cells from infection with SARS-CoV-2 wild-type virus and most of the viruses of concern, i.e., Alpha, Beta, Gamma and Omicron variants. Strikingly, C5G2 has the highest potency against Omicron BA.1 among all the variants, with an IC50 of 4.9 ng/mL. The cryo-EM structure of C5G2 in complex with the spike trimer showed that C5G2 binds to RBD mainly through its CDR3 at a conserved region that does not overlap with the ACE2 binding surface. Additionally, C5G2 binds simultaneously to the neighboring NTD domain of the spike trimer through the same CDR3 loop, which may further increase its potency against viral infection. Third, the steric hindrance caused by FR2 of C5G2 could inhibit the binding of ACE2 to RBD as well. Thus, this triple-function nanobody may serve as an effective drug for prophylaxis and therapy against Omicron as well as future variants.


Тема - темы
Antibodies, Neutralizing , Antibodies, Viral , SARS-CoV-2 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19 , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
2.
Sensors (Basel) ; 22(6)2022 Mar 14.
Статья в английский | MEDLINE | ID: covidwho-1742614

Реферат

COVID-19 is currently the biggest threat that challenges all of humankind's health and property. One promising and effective way to control the rapid spreading of this infection is searching for primary close contacts of the confirmed cases. In response, we propose COVID-19 Tracer, a low-cost passive searching system to find COVID-19 patients' close contacts. The main idea is utilizing ubiquitous WiFi probe requests to describe the location similarity, which is then achieved by two designed range-free judgment indicators: location similarity coefficient and close contact distance. We have carried out extensive experiments in a school office building, and the experimental results show an average accuracy of more than 98%, demonstrating our system's effectiveness in judging close contacts. Last but not least, we have developed a prototype system for a school building to find potential close contacts.


Тема - темы
COVID-19 , Contact Tracing , Contact Tracing/methods , Data Collection , Humans , Schools
3.
IEEE Internet of Things Journal ; 9(2):1479-1490, 2022.
Статья в английский | ProQuest Central | ID: covidwho-1612804

Реферат

Respiration rate is an essential vital indicator for health monitoring. While traditional sensor-based methods support acceptable sensing performance, the recent advance in wireless sensing could enable sensor-free and contact-free respiration sensing, which is particularly important during the practice of social distancing against a pandemic like COVID-19. Among a variety of wireless technologies employed for respiration sensing, Wi-Fi-based solutions are most popular due to the pervasive development of infrastructure. However, the existing Wi-Fi-based approaches need to retrieve Wi-Fi readings from access points, which are not often accessible for the end users. In this article, we propose a novel system, MoBreath, in which we utilize the Wi-Fi channel state information (CSI) readings extracted from the end-user device, a smartphone, to monitor the respiration rate for the first time. We introduce and address unique technical challenges, such as selecting the optimum CSI subcarriers from many noisy candidates and providing smartphone placement strategies for both single and multiple human target scenarios based on the Fresnel zone model to support highly accurate respiration sensing. Our evaluation of MoBreath using commodity smartphones in different environments shows that it can accurately estimate the respiration rate at a low error rate of 0.34 breaths per minute and support the sensing range of up to 3–4 m. Even for challenging scenarios such as the target is covered by a quilt and multiple targets are in the sensing area, MoBreath can still support highly accurate results.

Критерии поиска